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A new method is derived that is effective in calculating multigroup radiation integrals, i.e., 
the muitigroup Planck spectrum and its derivatives with respect to temperature. This new, 
polylogarithm-based, method is actually a set of methods that can be made arbitrarily 
accurate. The accuracy and speed of the new methods are compared with three methods based 
on: a rational polynomial fit, interpolation in tabular data, and a simple numerical integration 
scheme. The polylogarithm-based methods are unsurpassed in accuracy, and their execution 
speed is competitive with the fastest methods tested. In addition, the multigroup integrals that 
are calculated using the new methods have some desirable properties-proper normalization, 
positivity, and continuity-that do not all exist in any one of the other methods. c 1987 

Academic Press. Inc. 

A blackbody emits radiation with a frequency spectrum that is characterize 
the Planck distribution function. For many th~~maI-radiation-tray 
calculations, continuous spectra are approximated by a discrete, multigroup (or 
multifrequency) spectrum. In that case, the multigroup emission spectrum is charac- 
terized by definite integrals of the Planck spectrum over each multigroup frequency 
interval [I]. Some codes also make use of derivatives of the Planck distribution 
with respect to temperature. This paper describes a technique that accurately com- 
putes these multigroup distributions for an arbitrary set of frequency boundaries. 

The remainder of this paper is organized in four sections. Section II presents con- 
sistent definitions of the radiation spectra in two typical notations, describes how 
the analytic integrals are obtained, and shows how they are modified into a useful 
form. Section III uses the results from Section II to produce a famiiy of efficient 
numerical methods. Section IV describes the accuracy of the methods and compares 
the accuracy and computing speed of the new methods with a simple numerical- 

integration technique. Finally, Section V presents the conclusions. 

HI. INCOMPLETE INTEGRALS OF THE Amla~mN SPECTRA 

This section begins with a brief introduction to the Planek spectrum, an 
derivatives, written in two typical notations, Symbolic-algebra software is used to 
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obtain indefinite integrals of the normalized radiation spectra. The analytic 
expressions for the Planck integral and its derivatives are rearranged so that they 
can be accurately evaluated. The final subsection is devoted to obtaining 
approximate integrals in the low-frequency (or high-temperature) limit. 

A. Definitions-The Planck Spectrum and Its Derivatives 

The Planck radiation spectrum, Br(v’, T), describes the distribution of the 
radiation intensity for a blackbody in thermodynamic equilibrium 

Bl(v’, T) dv’ = $ ,,&- 1 dv’, 

where T is the material temperature, h is Planck’s constant, c is the speed of light, 
v’ is the photon frequency (set-‘), and k is Boltzmann’s constant. The Planck 
spectrum also describes the emission of radiation under the assumption of local 
thermodynamic equilibrium (LTE). 

The Planck spectrum can also be written with the frequency expressed in 
temperature units; v = hv’/k and 

B,(v, T) dv =E--.- v3 dv C*h’ eV- 1 ’ 

Introducing the reduced-frequency variable, x = hv’/kT= v/T, both forms of the 
Planck spectrum are conveniently written in terms of the normalized Planck 
spectrum, b(x), 

B,(v’, T)dv’= B,(v, T) dv=$b(x) dx, 

where o is the Stefan-Boltzmann constant. The normalized Planck spectrum, b(x), 
is defined by 

b(x)dx=$-&dx; 

with the normalization condition 

s 
cc b(x) dx= 1. 

0 

Derivatives of the multigroup Planck spectrum with respect to temperature are 
sometimes useful in numerical solutions and analysis. The first derivative, also 
called the Rosseland function, is useful when the Planck spectrum is linearized 
using a first-order Taylor-series expansion. Both the first and second derivatives can 
be useful in analyzing the stability and accuracy of such linearizations. 
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The Rosseland spectrum can be written in two analogous forms, eat 
derivative with respect to temperature of the corresponding Planck spectrum 

14 h,,‘/kT 

l(v’, T) dv’ = ““$; T) dv’ = -j$$ (,;,,,,& 1 )’ dv’, 

and 

Mv, T) dv = 
aB,(v, T) dv = 2k4 v4ev!7 

aT C2h3;r2 (e~iT-l)~ 
dv. 

Utilizing the reduced frequency, x = hv/kT, the Rosseland spectra are written in 
terms of the normalized Rosseland spectrum, r(x), 

40T3 
Rl(v’, T) dv’= R,(v, T) dv =-- r(x) dx, (7) ll 

where 

15 x4eu 
r(x) dx = a 

471 (er- 1)2 
d-x, 

with the normalization condition 

The second-derivative spectrum can be written in the same two forms, eat 
the second derivative of the Planck function with respect to temperature 

d2B,(v’, T) 
S1(v’, T) dv’= aT2 dv’ 

an 

Uv, T) dv = a2B2(v> T)  dv 
ar2 

2k4 v4eWkT 
= ~ tehvlkT _ 1 )3 

The normalized second-derivative spectrum is defined such that 

120T2 
S,(v’, T) dv’ = S,(v, T) dv = - s(x) dx, 

?T 
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FIG. 1. Normalized Planck and Rosseland spectra. 

where 
15 x4eX[2+x+e”(x-2)1 dx 

s(x) dx = - 
12rc4 (ex- 1)3 ’ 

(12) 

with the normalization condition 

s 

cc 
s(x) dx = 1. 

0 
(13) 

The normalized spectra--b(x), Y(X), and s(x)-are convenient because they con- 
tain all of the frequency dependence and are independent of temperature. Thus, the 
right-hand expressions in Eqs. (3), (7), and (13) are separated into the product of 
temperature-dependent and frequency-dependent terms. The normalized Planck 
and Rosseland spectra, b(x) and T(X), are shown in Fig. 1. 

B. Incomplete Integrals of the Radiation Spectra 

The indefinite integrals of the normalized Planck, Rosseland, and second- 
derivative spectra, defined in Eqs. (4) (S), and (12) respectively, are obtained using 
the MACSYMA symbolic algebra software’ 

i The Mathlab Group, Laboratory for Computer Science, Massachusetts Institute of Technology, 
MACSYMA Reference Manual, Version 10 (Symbolics, Inc., Cambridge, Ma., 1983). MACSYMA is a 
large symbolic manipulation program developed at the MIT Laboratory for Computer Science and sup- 
ported from 197551983 by the National Aeronautics and Space Administration under Grant NSG-1323, 
by the Office of Naval Research under Grant N00014-77-C-0641, by the U.S. Department of Energy 
under Grant ET-78-C-02-4687, and the U.S. Air Force under Grant F49620-79-C-020, and since 1982 by 
Symbolics, Inc. of Cambridge, Ma. MACSYMA is a trademark of Symbolics, Inc. 
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j b(x) dx = $ [6Li4(ex) - 6xLi,(e”) + 3x2Li2(e”) + x ‘iog(!-ex)-c]iC,. 

(14) 

.r 
Y(X) dx = $ 6Li,(e”) - 6xL3(e”) + 3x’Li,(e’) 

X4 X4 
+-r:‘log(l-e’)-g-4(e.~-;) (15) 

and 

j 
S(X) dx =$ 6Li,(e”) - 6xLi,(e’) + 3x2Li,(ey) 

L 

+x%g(l -eX)-X4--------- x4(xeX - 3)J 

4 
r+C,, 

12(e-” - l)‘_i 
(16) 

where Li,(z) is the general polylogarithm function, discussed in 
Lewin [a]. The integration constants, C,, C,, and C,, are defined subsequ 
the author’s knowledge, Eqs. (14t( 16) are new results; they are not found in any 
table of integrals. 

A brief description of polylogarithms follows, it includes only the i rmaiion 

that is needed for clarity; more-detailed information is available from win [a] 
and the references cited therein. Polygarithms are complex functions defme 
recursiveiy for complex z, 

Li,(z) = 
j; J&lj(z’! dz, (17) 

fsr n > 2. The recursion begins with the relatively weal-Kiowa diiogarit 

l&(z) = - 
J 
ri log(l -z’) d-, 

L . 
0 Z’ 

(18) 

Polylogarithms can be evaluated using the series 

provided /zj d 1. For the radiation integrals, x is real and 0 <X < CO; t 
1 d eX d 03. Therefore, because the polylogarithm’s arguments are outside the range 
of convergence, the polylogarithms in Eqs. (14) (15) and (86) not be directly 

evaluated using Eq. (19). In view of this complication, it wou see that the 
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analytic integrals are of little value for practical calculations. However, Kiilbig et 
al. [3], presented the argument-inversion relation for polylogarithms 

Li,(z)+(-l)“Li,(l/z)= -y&(g), 

where pn(z) is the Bernoulli polynomial [4] of order n, and i= fi. Using 
Eq. (20), argument-inversion relations are obtained for polylogarithms of orders 
2 - 4 in the specific case of real exponential arguments 

(214 

@lb) 

and 
3 x2x2 TL4 

Li,(e”)+Li,(e-“)= -g-y+- 
6 +Ts WC) 

Using Eqs. (21), the polylogarithms in Eq. (14) can be rewritten in terms of 
polylogarithms with arguments of the form eeX. This inversion of the arguments 
gives rise to imaginary terms that can be neglected because b(x) is a real function, 
so 1 b(x) dx must also be real. Define the incomplete Planck radiation integral, I7 
where 

n(x) = j-’ b(x’) dx’, 
0 

(22) 

which can be written in terms of the polylogarithm functions as 

h’(x)=; [-6Li,(e-“)-6xLi,(e~“)-3x2Li2(e-”)+x310g (eX-- 1)-x”] + 1. 

(23) 

The integration constant C, is chosen to be - 1 so that II(O) = 0; clearly then, 
n(m)= 1. 

The logarithmic term in Eq. (23) can be simplified to reduce roundoff error at 
large x by making use of the identity 

-x4 +x3 log(e” - 1) = x3 log(1 -e-“); (24) 

thus, 
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The incomplete osseland radiation integral, Y, is 

Y(x) E J; r(k) dx’. 

From Eqs. (14) and (IS)> r can be written in terms of II as 

(26) 

where C2 = -1 is chosen so that Y(0) = 0. Thus, from Eq. (27); if II is known then 
Y is easily obtained without any further approximation, 

Similarly, the incomplete second-derivative integral, A, is detined as 

A(x) 3 joy x(x’) dx’, (28) 
which is related to II as 

15 x”[e”(x+3)-31 
44=w+-p 

(C- a)* ’ 
(29) 

where C3 = -1 is chosen so that A(0) = 0. 
From the normalization conditions, Eqs. (5), (9), and (13) it is apparent that 

lim L!(x)= lim Y(x)= lim A(X)= 1. 
.x --I m x-x Y * a, 

The ~~~y~ogarithm functions in Eq. (25) are rea ily evaluated using the 
series in Eq. (19). The series converges for all rele ant values of x and act 
computes r, and A if enough terms are used. However, because the series con- 
verges slowly as C* + 1, better computational efficiency is achieved with 
specialized m&hods as x -+ 0. 

Equations (27) and (29) indicate that the integrals of both of the deri 
tra are a~a~yt~cal$y related to d7. Thus, no additional numerical tee 
necessary to evaluate the derivative spectra. Once II is calculated, the integrals of 
the derivative spectra-r and A-can be obtained with very little extra effort. and 
without any further approximation. 

C. Incomplete Integrals in the Small-x Limit 

The normalized Planck spectrum, b(x), is expanded in a Taylor series in x2 

3 4 6 x8 
X 

10 
-&X+LL+--- X 

12 

2 12 720 30240 ~209600~47900~6~- ." 
(31) 

The series representation of b(x) is substituted into Eq. (22) and integrated term- 
by-term to obtain an infinite-series representation for II(x) which converges rapidly 
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for small x. If terms in the integrated series that include powers of x greater than xN 
are truncated, the resulting finite series, nN(x), approximates I7 with some 
truncation error. For example, when N= 13, 

Xl1 Xl3 ___- 
13305600 + 622702080 (32) 

The integration constant is chosen so that n,(O) = 0. The truncation error is E,(x), 
where 

B,(x) = i?,(x) -n(x). (33) 

n,(x) and n(x) do not approach the same limit as x -+ co. In particular, 

lim Z?,(x) = +co for N=3, 59, 13, 17 ,... (344 x + 00 

and 

lim ii,(x) = -co for N=4, 7, 11, 15 ,... . Wb) x - cc 

Equation (34a) describes the behavior of the truncated series with positive trun- 
cation error (PTE) and Eq. (34b) describes the behavior of series with negative 
truncation error (NTE). Either type of series is accurate within a particular range of 
x. However, the behavior of these functions in the limit as x -+ cc has implications 
on their usefulness in conjunction with Eq. (25) that are discussed in the next 
section. 

III. NUMERICAL METHODS 

This section describes how the series representations of the incomplete radiation 
integrals are used to efficiently obtain accurate multigroup integrals in a com- 
putationally efficient manner. The truncation errors in the polylogarithm and 
Taylor series are examined numerically. Then, using each type of series where it is 
most-rapidly convergent, a family of methods is obtained for efficiently evaluating 
the incomplete radiation integrals. 

The objective of the numerical methods is to accurately compute b, from an 
approximate evaluation of 17. The incomplete radiation integral, n(x), can be used 
to calculate the definite integrals of the radiation spectra as 

+. s”+’ b(x’) dx’ = 17(x,+ ,) - ZZ(x,). (35) 
-% 

Care must be taken in evaluating Eq. (35) to ensure that roundoff errors do not 
contaminate the subtraction. 
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A. CalculL2ting II 

(x) is the incomplete integral of the Plan& spectrum, see Eq. (2.5); it is 
expressed in terms of polylogarithms that can be evaluated with an infinite series, 

q. (19). It is efficient to evaluate the logarithmic term in Eq. (25) using a similar 
series, 

log(1 +z)= f (-I)“‘$ 
k=I 

if - 1 < z < 1. Therefore, 

log(l-em”)= - f T$F. 
k=I 

Although the strict inequality for Eq. (36) is violated when x = 0 and --eex = -1, 
it will be shown later that this series will not be used in that limit. [It is interest’ 
to note that the series in Eq. (37) is exactly that which would be obtained fr 
Eq. (19) for Li,(e-“) if Li,was defined.] 

Substituting the series representations of Li 
Eqs. (19) and (37) into Eq. (25) and truncating ea 
series approximation to II(x), 

log6 1 - e -“) from 
terms, yields DL, a 

loo 
10-l 

10.* 

XT3 

1O-4 

W5 

1o-6 

1fY 

lo-8 

109 

ldO 
0 1 2 3 4 

Reduced hequency,x 

FIG. 2. Relative truncation error in the polylogarithm expansion. 
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The truncation error, E,(x), is 

EL(X) = n,(x) - n(x), 

where n(x) is the exact integral. 

(39) 

The series in Eq. (38) converge rapidly in I when x is large due to the e-lx depen- 
dence; however, as x -+ 0 the series converge slowly. Figure 2 illustrates the relative 
error, EL(x)/17(x), as a function of x for a few typical values of L. 

The curves in Fig. 2 demonstrate the rapid convergence of the series in Eq. (38) 
for the larger x values, e.g., seven terms reduce the relative error below foe7 for all 
x > 2. However, it is also evident that many more terms are required as x -+ 0. This 
slow convergence illustrates the need for alternate methods for evaluating II as 
x -+ 0. To be useful, the candidate method must be more efficient than simply 
evaluating Eq. (38) with larger L. 

B. Calculating irN 

Equation (32) approximates n(x) and is obtained by integrating the truncated 
Taylor series expansion of b(x). Figure 3 shows the relative truncation error, 
E,,,(x)/I7(x) [see Eq. (32)], plotted along with EL(x)/Z7(x); it illustrates the rapid 
convergence of the integrated Taylor series in the limit as x -+ 0. Figure 3 also 
shows that a combination of 17, and fiJx) can accurately approximate n(x) if an 
appropriate number of terms are summed in each series. For example, to ensure 
that the relative error in I7 is less than lo-‘, various combinations of L and N 
could be chosen; specifically, L = 7 and N = 9, or L = 15 and N = 9, or L = 5 and 
N= 13 would all meet that criterion. Using different combinations of truncation 

loo k\\\\ I I / 
Truncated 

Polylogarithm 
Series Truncated 

Taylor Series __/ _..~~-~~~~ 

N = 0 / 

: \/\ :i :: \ , \ j  
.- 

0 1 2 3 4 

Reduced Frequency, x 

FIG. 3. Relative truncation error of the series expansions. 
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parameters in the two series produces different a~~rox~~at~o~s to the radiation 
ifferent accuracy and com~~tat~o~a~ spee 

C. ~~~~i~i~g the Approximation to 11 

In discussing combined-series metho s for a~~roximati~ (x), it is usefd 
to locate the point where the two series are equal. This point, [, is defined by the 
continuity condition 

n,(i) = fLKf. (40) 

’ is a nonlinear function of L and N and can only be obtained numeri 
owever, there is no guarantee that a solution for [ will exist for every L, N 
Figure 4 shows II(x) and several approximations to II(x); the difference between 

n(x) and the approximations has been magnified by a factor of 100 for the sake of 
di3cussions. Specifically, the curve marked I?, is really II(x) c ICKM,(x) and f19 is 

(x) + 1008,(x). The truncated polylogarithm series: II,(x), is accurate for 
x > 1 despite using only 5 terms in each polylogar~th~ series. Figure 4 also shows 
the dual character of the truncated Taylor series a~~rox~mat~ons in the large-~ 
limit. As indicated in Section I, when the truncation error is negative [e.g., 
the Taylor-series approximation approaches -cc for large x. Conversely, if 
truncation error is positive [e.g., ZZ,(x)] then the approximate function a~~~oac 
f m for large x. 

a closer view of the data in Figure 4 in the vicinity of [; i 
ve been magnified by 1000. n,,(x) does not intersect the 

cated ~o~y~ogar~thm curve II,(x), and there is no solution for [. oweveh: 

Reduced Frequency, x 

FIG. 4. IT and approximations with magniiied errors. 
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0, 

E" 

8 
L 0.x) 
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Reduced Frequency, x 

FIG. 5. II and approximations with magnified errors, 

and B,(x) intersect and a solution for [ exists. This behavior has been found to 
be true in general, regardless of the polylogarithm truncation: a solution for [ exists 
for truncated Taylor-series expansions with positive truncation error 
(N= 3, 5, 9, 13, 17,...) but [ does not exist for series with negative truncation error 
(N=4, 7, 11, 15 )... ). 

The behavior illustrated in Fig. 5 has an important impact on the construction 
of numerical methods for approximating II(x). First, because [ does not exist for 
NTE series, any approximation to n(x) that uses them is necessarily discontinuous. 
Further, if such a discontinuous approximation is used in Eq. (35), then the 
calculated b, will be a discontinuous function of temperature. Second, if a PTE 
Taylor series is used then an approximate n(x) can be constructed from the 
minimum of the two approximations, i.e., 

@dx) = minCfl,, fldx)l. (41) 

Due to the discontinuity that arises when the Taylor series with negative trun- 
cation error are used, and because Eq. (41) is so simple, henceforth the discussion 
is restricted to truncated Taylor series with positive truncation error 
(N=3, 5, 9, 13, 17 )... ). 

As defined in Eq. (41), QN,,(x) is an accurate approximation to the incomplete 
Plan& radiation integral. @N,L(~) is useful in calculating the multigroup cumulative 
probabihty distribution [S] for sampling the Planck spectrum in multigroup 
Monte Carlo codes. Because it retains the same normalization as I7, @5N,L is 
appropriately normalized for sampling, i.e., 

@N,L(O) = 0 (42) 
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and 

lim @N,L(x) = 1. (43) 
x+m 

Utilizing @N,L( x on the right-hand side of Eq. (35) is an effective method for ) 
However, it does suffer from roundoff error for large x. 
approaches 1 and the subtraction in Eq. (35) is between two values 
ut their difference, b,, is many orders of ma~nitudc smaller. 

5) and (41) cannot accurately calculate value 
Y computers. (In the small-x limit, where 

roundsff error is not a problem.) Although this ~irnitat~o~ may not seem to be 
serious, it is easily remedied. 

The roundoff error is eliminated with a slight modification of Eqs. (35) and (41). 
Introduce an artifical discontinuity in @ at x = 5 

hen x is large, then T,,,(x) = n,(x) - 1. owever, from Eq. (38), the su 
tion in L(x) - 1 can be done algebraically instead of numerically; an 
iim Y+J; n,(x) ~ I= 0, the roundoff error is eli 
function, T,,,(x), is shown in Fig. 6. 

Ei .- 
s? 

0.2 

0.0 
a, 

.g 
8 -0.2 

E 
8 -0.4 

-0.6 

-0.6 

1 /  I  1 ,  1 /  

0 2 4 6 6 10 12 14 

Fledwed Frequency, x 

FIG. 6. The composite function &+L. 
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Substituting r,,,, for ZZ in Eq. (35) yields 

1 

fKv(x, + 1 ) - &4X,)> if x,+,<i 

b, = 17,(x, + 1) - &&J - 1, if x,<i<x,+, (45) 

Mx, + 1) - Mx,) if xg > [. 

The first and third results are correct from the direct application of r to Eq. (35). 
However, the result that is produced for the group defined by the relation 
+a<X,,l is actually b, - 1, which is negative. In fact, this is the only situation 
that can lead to a negative b,. The negative value is easily detected and 1 is added 
to it to obtain the correct result, b,. Thus, the discontinuity that was introduced in 
Eq. (44) is removed and b, remains a continuous function of temperature. 

A simple restatement of Eq. (44) allows the entire algorithm to be implemented 
without explicit knowledge of [, i.e., 

J1N,L(X) = i 
cv(X)~ if D,(X) > n,(x) 

U,(x) - 1, if n,(x) <n,(x). (46) 

Equation (46) is preferable to Eq. (44) because there is no need to calculate 5, 
which can be time-consuming. 

IV. RESULTS 

The previous sections of this paper defined a family of polylogarithm-based (PB) 
methods for evaluating the multigroup Planck radiation integrals, and their 
derivatives. In this section, a simple test problem is used to study the accuracy and 
computing speed trade-offs for the new methods. The speed and accuracy of the 
new methods are compared with three methods that are in common use. 

A. Test Problem 

The objective of the methods described herein is to evaluate multigroup radiation 
integrals. The test problem chosen in representative of the realistic requirements 
that are placed on the algorithms. The reduced-frequency space is divided into 60 
groups spaced logarithmically between 0.1 and 20. Two groups are added to span 
the entire positive x range; the first group extends from 0 to 0.1 and the last group 
spans the range from 20 to co. Because the timing of routines on the CRAY com- 
puters depends on the mode of vectorization, the timing results are compared for 
200 “zones” or temperatures. 

To evaluate the effectiveness of the methods derived herein, the new methods are 
compared with three existing techniques that are commonly used to evaluate mul- 
tigroup Planck integrals. The three other methods are: a modified trapezoid-rule, a 
rational approximation, and a table look-up method. 
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The modified trapezoid-rule (MTR) technique uses the ~~te~~at~~~ for 

where (x ) = .Jz. The MTR is chosen fm it5 simplicity and ease of 
v~ctori~at~o~; it is not expected to be very aec 

pper bound on the speed of such 
technique, the rational ~o~~~orn~a 

Zimmerman [6]. 4n the RPF method, II an 

where, 

and 

a, = 6.493939402267, 

a, = 8.3~7008~34543~ 

a* = 5.57097~415~3~~ 

a3 = 2.16176155309?, 

a4 = ~.51941729~6679, 

as = Q.077~3864~~7~3~~ 

b, = ~.280733975~744. 

PF method, the equation used to evaluate II depends on the value of 
x g + i. Therefore, in some instances, the set d relation in Eq. (48) is used for values 
of x that are much less than 10h3. The PF routine makes use of Eq. (27) to 
dculate the multigrobap Rosseland spectrum. he comments in the RPF routine 
indicate that the accuracy of the integrals is 0.2%. 

The third technique, the table look-up (TLU) method, is a product of the 
DRA ’ radiation bydrodynamic~ code effort. For most valu 

rforms table look-ups to approximate L? when 1.9 < x < 12. 
is calculated as 

2 Theoretical and Computational Radiation Hydrodynamics, Volume II, The DRAD code-Compton 
Scattering. GA-9530, Vol. II, 1969. 
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The second case in Eq. (49) is obtained by integrating b(x) in the limit of large x, 
specifically when eX 9 1; in that limit, I7 can be approximated by 15 1 x3eVX dx/z4. 
The TLU method is not vectorized. 

B. Accuracy 

The polylogarithm-based methods derived in this paper can achieve any desired 
accuracy by increasing the number of terms in the series expansions in Eq. (46). To 
bracket the range of accuracy and computing speed, three PB methods are com- 
pared with the other methods described in the previous section. The principal 
measure that is used to compare the accuracy of the methods is the maximum 
relative error in any b,. The “correct” results, used to compute these errors, are 
obtained with a 7-point adaptive Newton-Cotes quadrature rule; these values are 
correct to within a lo-l3 relative error criterion. There are other measures of 
accuracy that will be discussed later, but their importance is secondary. 

The first column of data in Table I summarizes the accuracy of the methods 
tested. The methods are listed roughly in order of decreasing accuracy. This paper 
does not address the question of an acceptable error; each individual application 
must determine an appropriate maximum error. An advantage of the PB methods is 
that they can be tailored to meet almost any accuracy requirement. 

The NewtonCotes numerical integration method (NC7) is clearly the most 
accurate method tested. However, the most-accurate PB method tested, TZ1,lO, has 
a maximum relative error that is less than 5 x lOWlo, which is probably more than 
adequate for most applications. More accurate results can always be obtained by 
increasing N and L in Eq. (46). Table I indicates the wide range of accuracy ( 10e3 
to 10-‘“) that is achieved using the three PB methods. The RPF and TLU methods 
are comparable to each other in accuracy (< 3 x 10p3) but both methods are less 
accurate than the PB methods. These results confirm that the accuracy of the RPF 
method is bounded by 0.2%. 

TABLE I 

Planck Integral Methods-Errors and CPU Time 

Method 
Maximum CPUb (/Set) 
rel. error0 Planck only 

CPU’ (nsec) 
Planck + Rosseland 

NC7’ 1.0 x low’3 160 
r 21,10 3.5 x lo-‘0 0.95/1.92 1.05/2.08 
r 17,s 1.2 x 10-6 0.7311.47 0.8211.69 
r 
RYF 

1.0 X 10-3 0.56/1.15 0.6711.36 
2.2 x 10-S -/1.09 -/1.30 

TLU 2.5 x 10m3 6.9 
MTR 1.0 x 100 0.36/0.59 0.41/0.69 

’ supl(b, - b,NC7)/b,NC71. 
’ Group-wise vectorization-zone-wise vectorization. 
’ Newton-Cotes 7-pt. numerical integration. 
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The method produces results with very large errors. Pn addition, t 
method is sensitive to the location of the group boundaries; these error 
much larger when the temperature is either very large or very small corn 
the frequency boundaries. The MTR errors are also sensitive to the spacing 
group boundaries. 

There are alternate, possibly less-important, measures of the accuracy: pr 
normalization, and continuity of the approximate 17 function. In some situat 
these secondary accuracy considerations can impact the maximum relative-error. 

When the multigroup integrals are properly normalized, C b, = 1. 
mahzation is hepful in obtaining correct radiation temperatures as the 
comes into equilibrium with the material. Proper normalization also ensures that 
the numerical emission by the material agrees with the LTE theory. Renor- 
malization, i.e., adjusting one or all of the b, values to achieve the pro 
mahzation, can have significant impact on the 
simple additive correction is performed then the 
when C b, > 1 for the unnormalized spectrum method is the onkty 
method that yields a significant normalization error. 
j I - C b,l = 2.7 x 10P4. Experience has shown that the 
is extremely sensitive to the location and spacing 
all other methods that were tested, the normalization error is less than 10.. I’~ 

is desirable because when dRj’8x is unbounded, the caIcudated h, 
ity becomes a discontinuous function of temperature. A discon- 

tinuous variation of b, to temperature 
with when iterative methods are us 
remains bounded, as it does for the 

ositive and each is a continuous function of temperature. If i3U/ax = CC for some x 
r the TLU method this occurs when x = 1.9 or x = 12), then ah b, are positive 

but 6, is a discontinuous function of temperature. 
If c’LT/ax = -cc for some x, as it does for the PF method at x = 1 

b, near the disc~~t~~uity may be negativ . it will also be a discontinuous function of 
temperature. To avoid negative b,, PF method selects the equation used lo 
evaluate based only on the value of xg+ I) see Eq. (48). The resultin 
dis~~nti~~ous functions of temperature as xg + 1 crosses IO ~ j. In additi 
equation-selection technique results in inaccurate values near xg+ , = I 
the equation that is accurate for large-x is sometimes used to caPculate 
x< lop3 as well. 

To reiterate, the b, calculated using PB methods are always positive, ~o~t~~~~~~ 
of temperature because a47/dx is finite. 
itional accuracy consideration is the error in the 
with respect to temperature. The only method 

erivative of the Planck spectrum are the P 
use Eq. (27) to relate the Planck and osseland integrals; therefore, the additiona. 
corn~~tat~o~a~ effort is small and no ors are introduced. 

The results of the accuracy study are summarized rather simply. 
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methods except MTR produce 6, that are accurate to within 2.5 x 10p3 relative 
error. If more accuracy is needed or desired, only PB methods allow that option. 
The TLU and RPF methods have the undesirable property that the calculated b, 
are not continuous functions of temperature. 

C. Computing Speed 

Table I summarizes the accuracy and computing speed results of the several 
methods tested. The computing time results are obtained by repeatedly calculating 
b, for the test problem while the CPU time is being accumulated. The CPU-time 
data in Table I are obtained by dividing the total CPU time by the number of 
repetitions, the number of groups, and the number of zones; this value is the CPU 
per result. 

On a vector machine, such as the CRAY-X/MP48, the computing time depends 
upon the type of vectorization that is used. Therefore, for vectorized methods there 
are two values for the CPU time per result in Table I. The first value is for vec- 
torization by group, e.g., the group index is incremented in the inner loop. In that 
case, 17 is calculated once for each multigroup boundary, x,. The second value in 
each CPU-time pair is for vectorization by zone. In the second case, IZ must be 
calculated twice for most xg. From the results in Table I, it is clear that group-wise 
vectorization is always preferable to zone-wise vectorization from a computing 
speed point-of-view. However, zone-wise vectorization may be necessary due to 
externally imposed constraints. 

All of the approximate methods are faster than the numerical integration using 
the Newton-Cotes method; this is not surprising since the NC7 results are only 
used as a benchmark. The TLU method is about 6 times slower than the PB (r,,,) 
and RPF methods with about the same accuracy. The MTR method is about 2 
times faster than the PB and RPF methods; however, MTR is probably too 
inaccurate and unreliable for most applications. 

From a combined accuracy and computing-speed point of view, the PB and RPF 
methods are the strong contenders. Table I shows that group-wise vectorization of 
the calculations is always faster than zone-wise vectorization. Therefore, the fastest 
and most-accurate results are obtained using the PB methods that have been 
vectorized by frequency group. 

If external constraints require zone-wise vectorization (e.g., if the integrals can 
only be stored for one group at a time), then both the RPF and PB methods are 
available. The RPF method is about 5% faster than a comparably accurate PB 
method (r9,3). However, for most uses 0.2% accuracy is not sufficient. In that case, 
a 3.5% speed penalty yields 3 orders of magnitude reduction in the maximum error 
for TIT,*. In addition, the results produced by the PB methods are positive and con- 
tinuous functions of temperature, properties that are not guaranteed by the RPF 
method. 

The third column of data in Table I shows the time required to calculate both 
spectra: Planck and Rosseland. For the RPF method, the additional time required 
to calculate the Rosseland spectrum is only 20% of the time to calculate the Planck 
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F method. 
slower than the RPF method. As 

s have the additional advantages o 

A general method for calculating multigroup Plan& and asseland integrals has 
tested, and compared with existing methods. The ~o~~~~ga~~th 

s can be tailored to meet any accuracy requirements. Some 
ds are ten times faster than existing unveetorized metho 
TR method is faster than th.e P methods, but it is not accurate 

applications. 
PF methods have the best ~~rnb~~atio~ of accuracy an puting 

wever, the RPF method is constrained to an accuracy of 0.2% which is 
inadequate for some applications. The R sd atso suffers from the ~r~b~e~~~ 
that the integrals that are calculated ar inuous fu~6t~o~s of tem~erat~r~~ 

wise vectorization of the PB methods is faster and more accurate tha 
od. If zone-wise vectorization is necessary, the T,,, P 
ositive, and continuous; the time penalty is only 5%. 

hen better accuracy is required, PB methods o 
For 35% time penalty, errors are reduced befo 
penalty, the maximum error is reduced to 3.5 x 1 

osseland integrals with a small (l&15%) penalt 
tigroup ~~rn~~ative probability distribution for 

hoton distributions. 
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